Рейтинг@Mail.ru
Поиск
x
Журнал №191, август 2019
Журнал №70, июнь–август 2019
Это новый сайт National Geographic Россия. Пока мы работаем в режиме бета-тестирования.
Если у вас возникли сложности при работе с сайтом, напишите нам: new-ng@yasno.media
Наука

Российские физики создали сверхточную «квантовую линейку»

РКЦ / МФТИ
21 июня 2016
/upload/iblock/eed/eed12acadf0d880a4e1ba7e2dd824e91.jpg
Александр Львовский и Александр Уланов в Лаборатории квантовой оптики в РКЦ.
Фото: РКЦ
Физики из Российского квантового центра, МФТИ, ФИАНа и парижского Института оптики придумали метод создания особого состояния квантовой запутанности, которое позволяет получить сверхточную линейку, способную измерять расстояние в сотни километров с точностью до миллиардных долей метра. Соответствующий пресс-релиз поступил в редакцию "National Geographic Россия" во вторник, 21 июня.
«Эта техника позволяет использовать квантовые эффекты для повышения точности измерения расстояния между наблюдателями, которые отделены друг от друга средой с потерями. В такой среде квантовые характеристики света легко разрушаются», – говорит Александр Львовский, руководитель научного коллектива в РКЦ, выполнившего исследование, и профессор университета Калгари. Предметом исследований стали так называемые N00N-состояния фотонов, в которых возникает суперпозиция пространственных положений не одного фотона, а сразу множества. То есть многофотонный лазерный импульс одновременно находится в двух точках пространства. Эти состояния могут иметь большое значение для метрологии, точнее для резкого улучшения возможностей оптических интерферометров, например, для тех, что использовались для открытия гравитационных волн в рамках проекта LIGO. В оптических интерферометрах лучи лазера, приходящие от двух зеркал, «смешиваются» друг с другом, и возникает интерференция – волны света, накладываясь, либо гасят друг друга, либо усиливают – в зависимости от точного положения зеркал. Это позволяет измерять их микроскопические смещения, потому что расстояние между полосами равно длине волны – примерно 0,5-1 микрона. Однако для многих экспериментов нужна еще более высокая точность. Например, для обнаружения гравитационных волн требовалось измерять смещения, сопоставимые с диаметром протона. И здесь могут пригодиться N00N-состояния, поскольку при интерференции они создают полосы, расстояния между которыми много меньше длины волны. Соответственно, повышается и точность измерения расстояний. «Проблема в том, что N00N-состояния чрезвычайно чувствительны к потерям. Проходя большие расстояния – как в атмосфере, так и по волоконным каналам – луч света неминуемо ослабляется. Для обычного, классического света это не так страшно. А вот если запутанное световое состояние пройдёт через среду даже с небольшими потерями, и запутанность «распутается», и никакой выгоды мы от неё уже не получим», – говорит Львовский. Он и его коллеги наши способ решить эту проблему. «Есть такое явление – обмен запутанностями. Допустим, у Алисы и Боба (так в физике называют участников обмена квантовыми объектами) есть по запутанному состоянию. Тогда если я возьму одну часть запутанного состояния от Алисы, вторую от Боба, и проведу над ними совместное измерение, то оставшиеся части состояний Алисы и Боба тоже станут запутанными, хотя до этого никогда не взаимодействовали», – говорит Львовский. «В нашем эксперименте, который проводился в лаборатории РКЦ, Алиса и Боб создают два запутанных состояния. И посылают одну из частей в среду с потерями, которую в нашем опыте моделирует затемненное стекло. Третий наблюдатель, посередине между Алисой и Бобом, проводит совместное измерение на этих частях. В результате происходит обмен запутанностями: оставшиеся части состояний Алисы и Боба оказываются в состоянии N00N. А поскольку эти части потерь не испытали, они выказывают свои квантовые свойства в полной мере», – объясняет ведущий автор статьи, научный сотрудник РКЦ и аспирант МФТИ Александр Уланов. По его словам, уровень потерь в этом стекле соответствовал толще атмосферы примерно в 50 километров, а в целом этот метод позволяет обеспечить сверхточные измерения дистанций в сотни километров, что вполне удовлетворяет современным требованиям – плечо интерферометра LIGO, например, имеет длину около 4 километров.